# Slaying X 00Ms

Jane Xu Mark Saroufim

PyTorch Devs

## How people deal with OOMs

Smaller batch size Smaller model



RuntimeError: CUDA out of memory

### **VRAM**





24 GB of VRAM 40 or 80 GB of VRAM

## Memory crash course

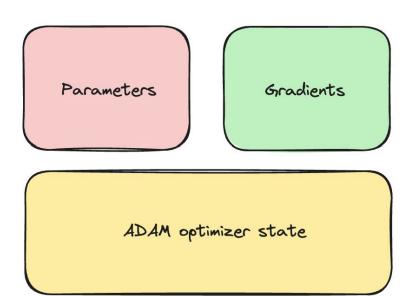
Llama 7B has 7B parameters in fp16

Each parameter is 2 bytes so parameters is 14GB

Gradients memory = parameter memory

Adam Optimizer State = 2 \* parameter memory

Total = 14GB + 14GB + 28GB = 56GB

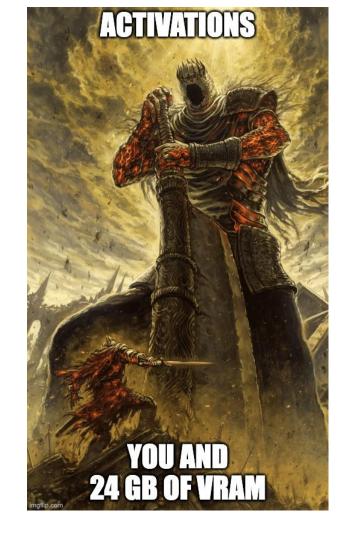


#### Larger batch sizes and context lengths

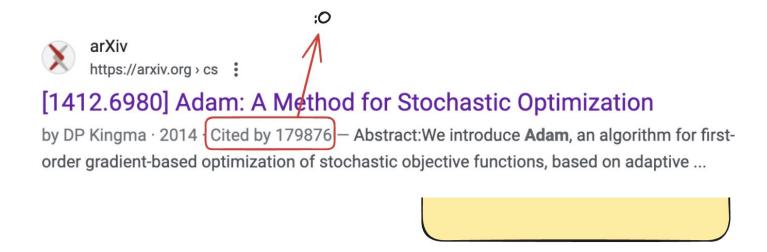
Bottleneck is almost always Activations that's why Flash Attention is important

Paper math is great but Papers don't tell us when we're wrong

https://dev-discuss.pytorch.org/t/how-to-measure-memory-usage-from-your-model-without-running-it/2024

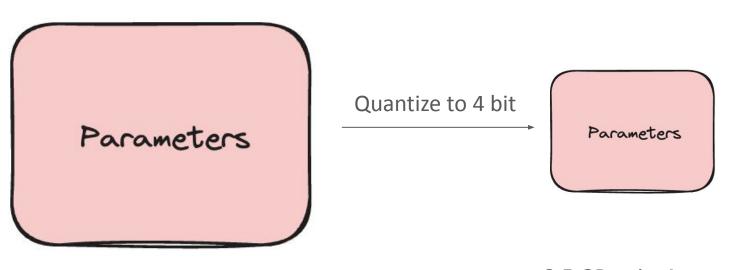


#### Let's optimize the bottleneck!



## Ok let's take a look at params

14 GB at fp16



3.5 GB at int4 Each int4 needs ½ byte\*

#### Hello quantization

```
import torch
def quantize_tensor(x_fp32):
    absmax = torch.max(torch.abs(x_fp32))
    c = 127.0 / absmax
    x_int8 = torch.round(c * x_fp32).to(torch.int8)
    return x_int8, c

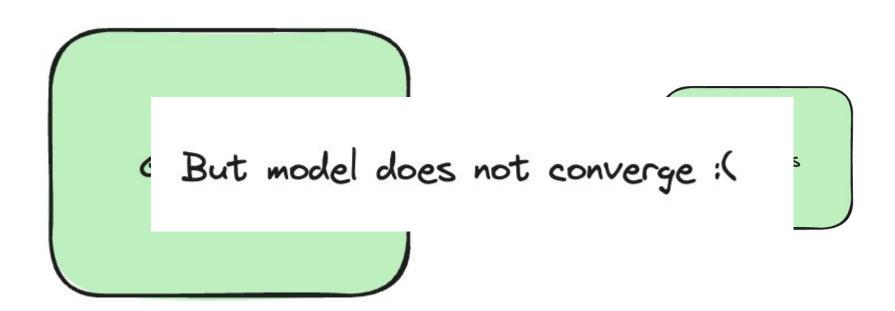
def dequantize_tensor(x_int8, c):
    x_fp32 = x_int8.to(torch.float32) / c
    return x_fp32
```

#### torch.compile

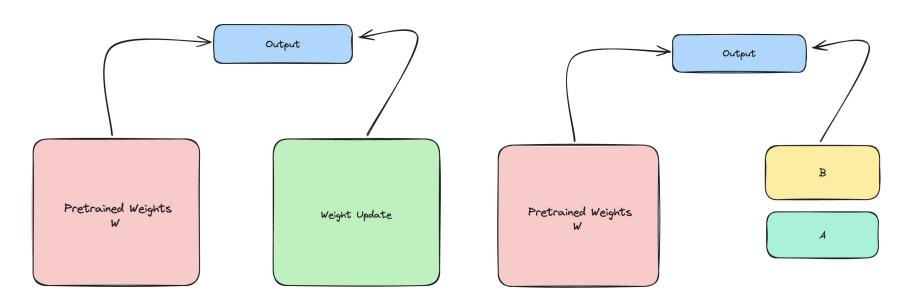
```
import os
os.environ["TORCH_LOGS"] = "output_code"
import torch
@torch.compile()
def quantize tensor(x fp32):
    absmax = torch.max(torch.abs(x_fp32))
    c = 127.0 / absmax
    x int8 = torch.round(c * x fp32).to(torch.int8)
    return x int8, c
@torch.compile()
def dequantize_tensor(x_int8, c):
    x_{fp32} = x_{int8.to(torch.float32)} / c
    return x fp32
x int8, c = quantize tensor(torch.randn(10, device="cuda"))
x_fp32 = dequantize_tensor(x_int8, c)
```

```
def triton (in out ptr0, in ptr0, out ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
   xnumel = 1
   rnumel = 10
   RBLOCK: tl.constexpr = 16
   xoffset = tl.program id(0) * XBLOCK
   xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
   xmask = xindex < xnumel
   rindex = tl.arange(0, RBLOCK)[None, :]
   roffset = 0
   rmask = rindex < rnumel
   r0 = rindex
   tmp0 = tl.load(in_ptr0 + (r0), rmask, other=0.0)
   tmp1 = tl math.abs(tmp0)
   tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
   tmp4 = tl.where(rmask, tmp2, float("-inf"))
   tmp5 = triton_helpers.max2(tmp4, 1)[:, None]
   tmp6 = 1 / tmp5
   tmp7 = 127.0
   tmp8 = tmp6 * tmp7
   tmp9 = tmp8 * tmp0
   tmp10 = libdevice.nearbyint(tmp9)
   tmp11 = tmp10.to(tl.int8)
   tl.debug_barrier()
   tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp8, None)
   tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp11, rmask)
```

## Back to gradients



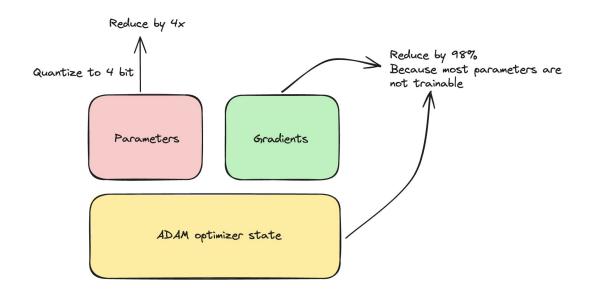
## Full finetuning vs LORA



weight += (lora\_B @ lora\_A) \* scaling

#### **QLoRA**

All winning entries for <a href="https://llm-efficiency-challenge.github.io/">https://llm-efficiency-challenge.github.io/</a> used QLoRA



## Implementing QLoRA

4000 lines of CUDA code

https://github.com/TimDettmers/bitsandbytes/blob/main/csrc/kernels.cu



master forgive me, but i need to activate "cuda mode" just this once



Jeremy Howard ② @jeremyphoward · Dec 15, 2023

Replying to @jeremyphoward

he says he goes into "cuda mode" to write kernels. No music, lights off, no distractions.

He wrote the 4bit kernel in one night.

#### Forgot to mention some details

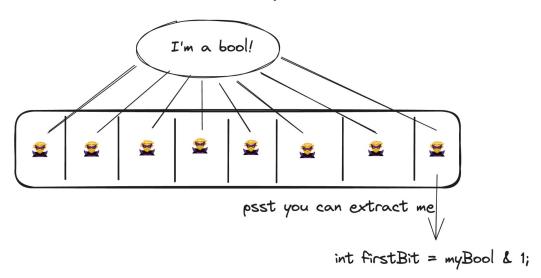
- Weights aren't in int4 but NF4 which is closer to a normal distribution
- Can't matrix multiply NF4 tensors, need to dequantize and matmul
- Remember how important the max is when doing the quant? Well you can't use the same max for everything otherwise you're too sensitive to outliers
- Quantization typically done in blocks with independent scales
- QLoRA quantizes the scales, double quantization!
- 000
- Let's look at some code
   <a href="https://github.com/pytorch/ao/blob/main/torchao/dtypes/nf4tensor.py">https://github.com/pytorch/ao/blob/main/torchao/dtypes/nf4tensor.py</a>

## Bitpacking

PyTorch supports down to int8 <a href="https://pytorch.org/docs/stable/tensors.html">https://pytorch.org/docs/stable/tensors.html</a>

Elements of a tensor need to be byte (8 bit) addressable

C++ is the same a bool takes 8 bits of memory



#### But what if we wanted to implement a real Tensor

Probably feature PyTorch devs are most excited about <a href="https://github.com/albanD/subclass\_zoo/">https://github.com/albanD/subclass\_zoo/</a>

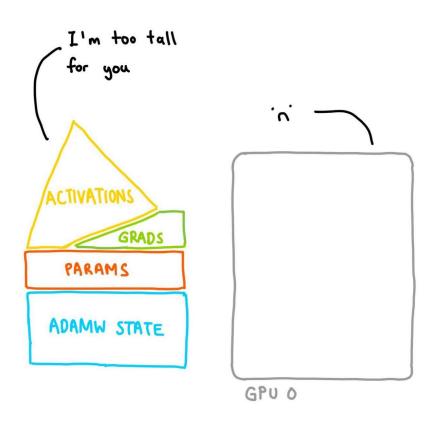
We can define what matrix multiplication over NF4 means using Python <a href="https://github.com/pytorch/ao/pull/37">https://github.com/pytorch/ao/pull/37</a> by @drisspg

return F.linear(input, weight.to(input.dtype))

But we can also define how FSDP would handle an NF4 Tensor <a href="https://github.com/pytorch/ao/pull/150">https://github.com/pytorch/ao/pull/150</a> i.e aten.split by @weifengpy

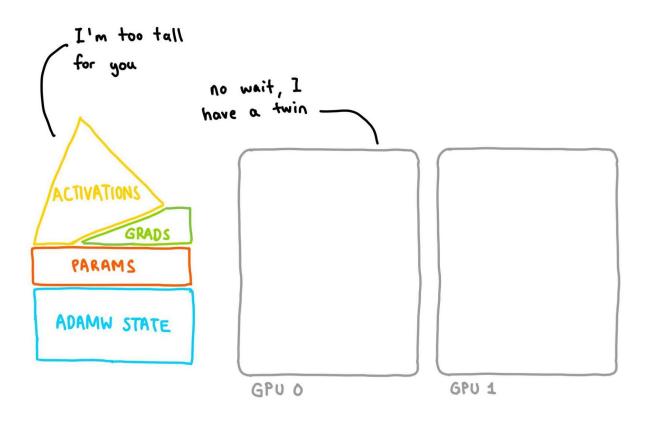
https://pytorch.org/docs/stable/tensors.html

#### One GPU was not enough...

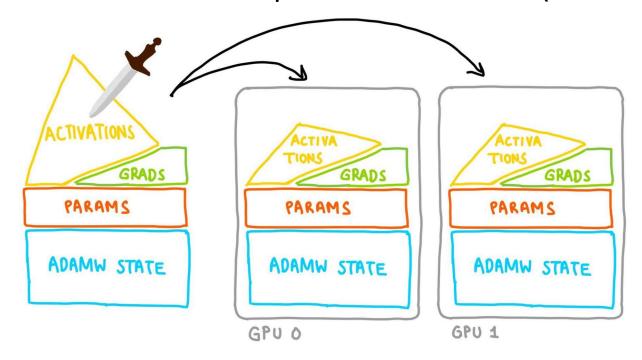


\* DISCLAIMER: the model memory to the left does not include literally everything that'll take up memory during training, but is meant to be illustrative of the significant pieces.

## But what if you had 2?

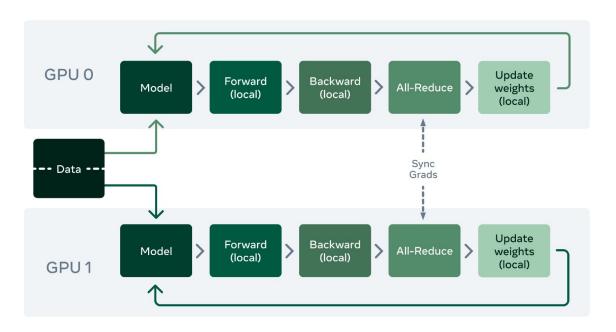


### Let's start with the obvious: parallelize the data (batch size)



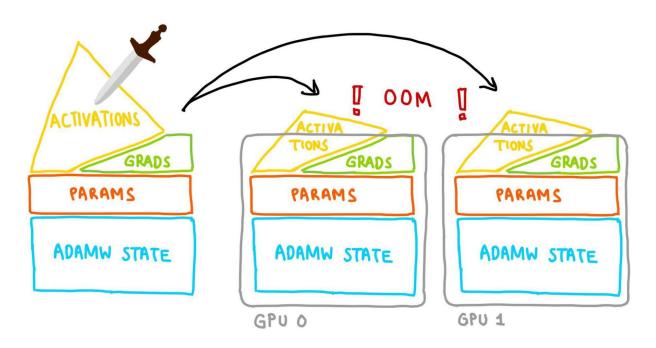
Sharding the batch size halves the activations. Everything else is duplicated.

#### Let's start with the obvious: parallelize the data (batch size)



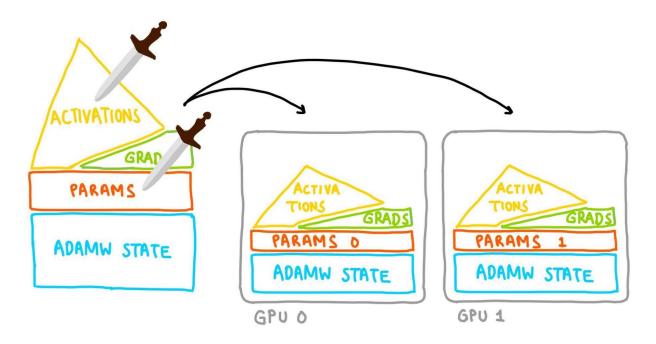
Note that we need to sync/sum the grads before the optim step with an all-reduce! In general, techniques to lower memory require additional compute and management.

## But what if that wasn't enough?



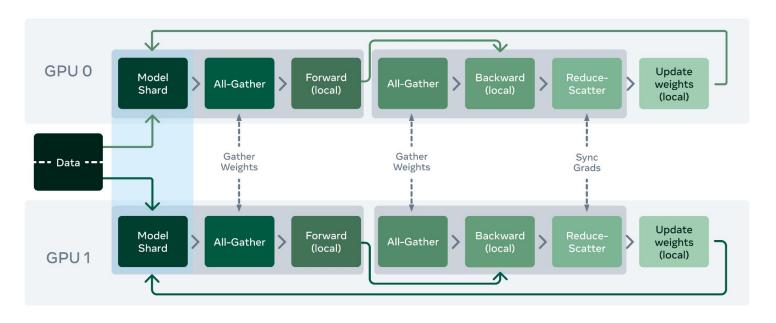
What else can we do?

## Let's keep parallelizing! Shard the params too.



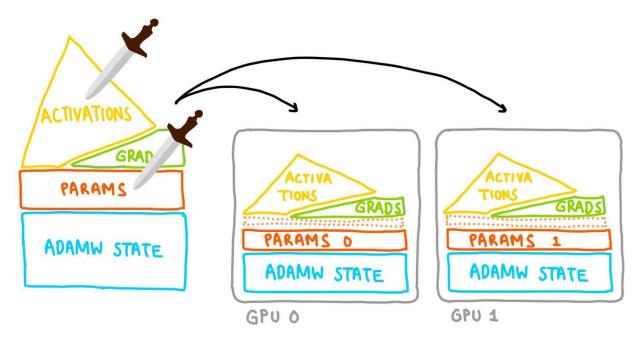
Sharding the params will in turn reduce gradient and optimizer memory.

## Congrats you have discovered FSDP! - fully sharded data parallel



FSDP will bring in only a layer's weights at a time to avoid using too much memory. As a result, we need more collectives to shuffle tensors between GPUs.

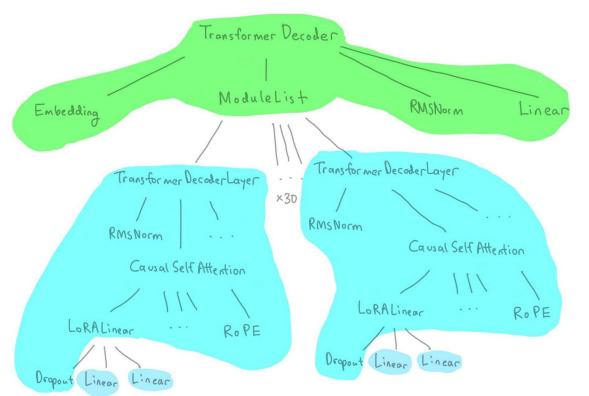
## A slightly more accurate depiction of memory for a step in FSDP



Memory corresponding to the layer getting processed.

Will be freed when the layer is done.

## What constitutes a layer in FSDP?

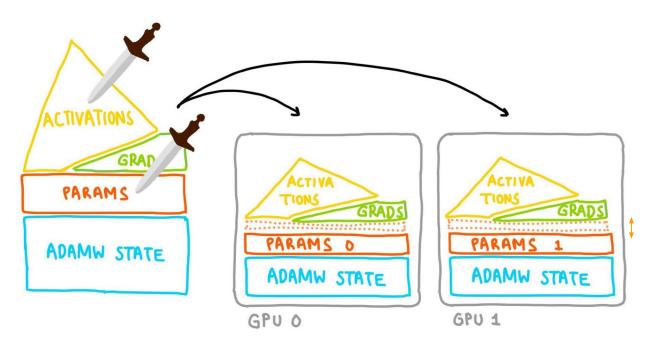


Every nn module is a tree of more nn modules.

The user's wrapping policy determines what gets treated as its own "layer".

This depicts a wrapping policy where TransformerDecoderLayer and Linear are specified.

## What you decide to wrap influences memory usage (and more)



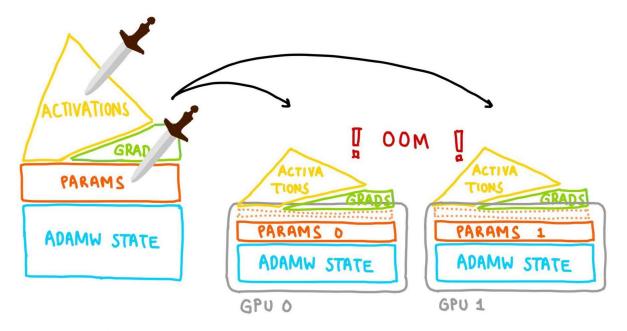
The more "fine-grained" you wrap, the smaller that dotted memory will be.

Smaller blobs = less memory needs to be all-gathered at a time.

Memory corresponding to the layer getting processed.

Will be freed when the layer is done.

## But what if after all your tweaking, you still OOM?

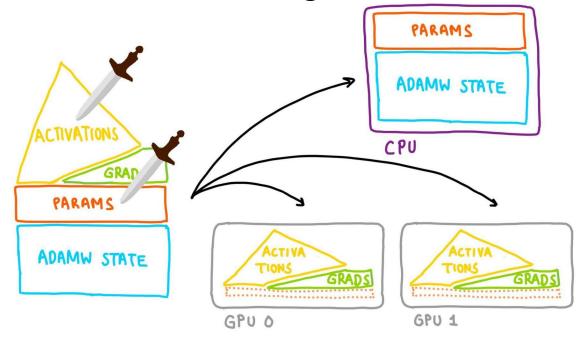


Memory corresponding to the layer getting processed.

Will be freed when the layer is done.

What *else* can we do?

## In comes CPU offloading!



Memory corresponding to the layer getting processed.

Will be freed when the layer is done.

Don't forget about the CPU!

Just keep parameters on the CPU and move them to the GPU when computing forward + backward.

Note that the optimizer update will be done on CPU, so the optim state lives there too.

### None of this is quite new...right?

I mean...okay, yes, FSDP has existed for a while, with all the features mentioned above.

And wonderful people have been using these features, like Answer.AI who built fsdp\_glora with FSDP x bnb to compose qLoRA and distributed.

BUT we've recently come out with *per-parameter* FSDP!

#### What is per-parameter FSDP?

Let's start with the status quo: **flat-parameter FSDP1**. Say you have these params to shard across our two GPUs:

t1: (2, 3) t2: (3, 3) t3: (2, 2)

**Goal**: make all-gather efficient **Constraint**: NCCL requires each

GPU contribute same-size Tensors

Logical Shape

t1

t2

t3

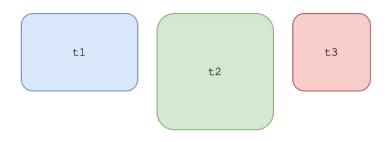
t1

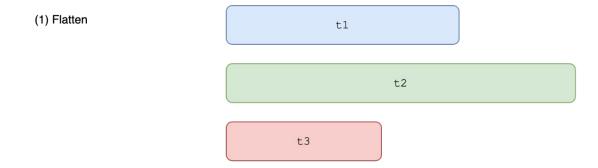
In Memory

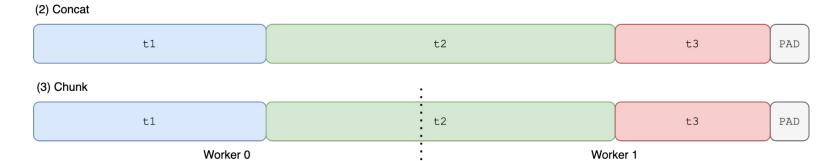
t2

t3

#### FlatParam FSDP







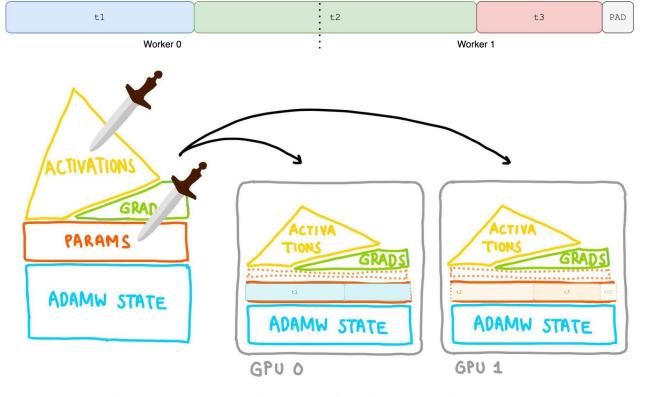
#### FlatParam FSDP

Each chunk is smooshed into **one** Tensor, which we call a FlatParameter.

This approach has its pros:

- Contiguous memory
- One can use views to retrieve t1, t2, t3 (vs copy's)

but also its cons...



Memory corresponding to the layer getting processed.

Will be freed when the layer is done.

## Another way to shard, dubbed "per parameter"

Remember you have these params to shard across our GPUs:

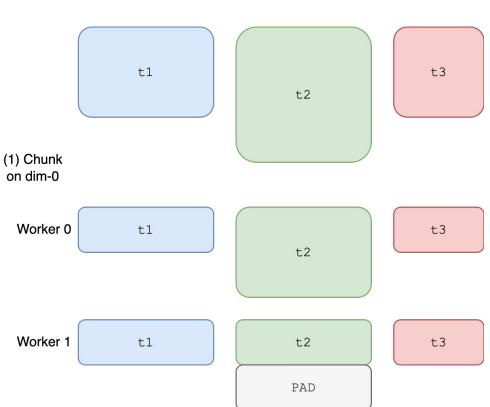
t1: (2, 3)

t2: (3, 3)

t3: (2, 2)

We can slice each parameter in half over dimension 0, and pad uneven slices.

This way, every param has representation on every machine.

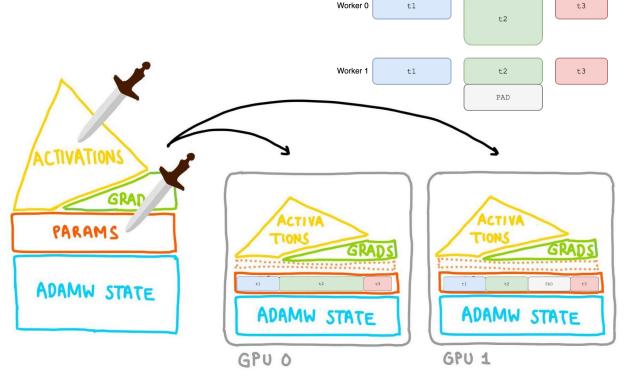


## Per-param FSDP2

Each chunk is **many**Tensors, each a DTensor (D is for distributed).

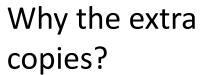
This approach has a major pro: each param maintains its own identity (dtype, subclass, metadata).

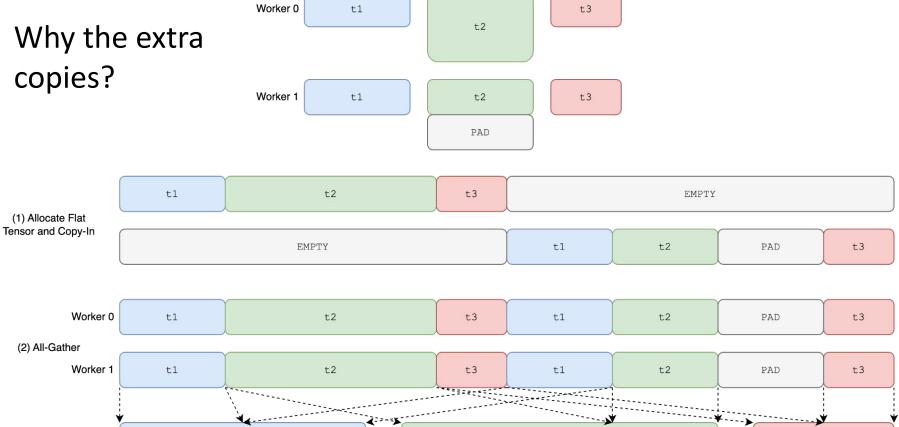
BUT does require extra copies (\$\$\$ > views) during All-Gather.



Memory corresponding to the layer getting processed.

Will be freed when the layer is done.





t2

t3

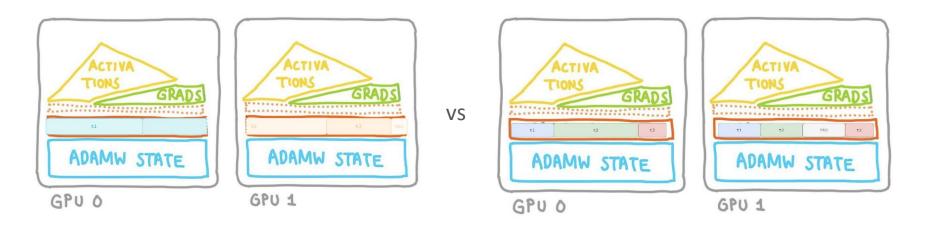
**Both Workers** 

t1

(2) All-Gather

(3) Copy-Out

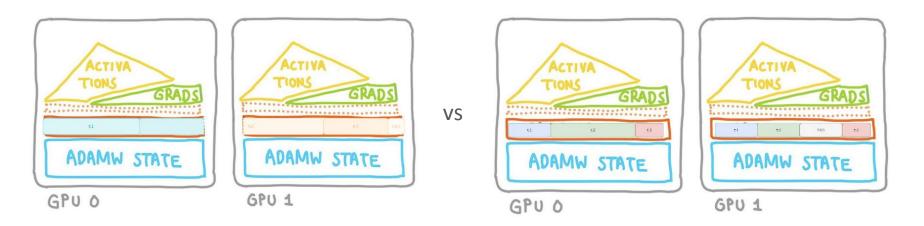
## Why do we think the "per-parameter-ness" is worth it?



FlatParameter forces t1, t2, and t3 to share dtype, requires\_grad as it is one Tensor.

In per-params, t1, t2, and t3 here can be themselves! They can have their own dtype, requires\_grad.

### Why do we think the "per-parameter-ness" is worth it?



Think **quantization**: what if you wanted t2 to be uint8 + t1 to remain fullsized bf16? Think **parameter freezing/LoRA**: what if t2 is a frozen base weight while t3 is the LoRA adapter?

You'd have to hack around FSDP1 concepts you'd get for free in FSDP2.

## FSDP2 also has other cool pros, like deterministic memory

This is another major implementation change that actually guarantees deterministic memory:

Only 2 layers worth of memory will coexist at a time.

But it'll take another lecture to explain xD, for more details, see <a href="https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspective/1486">https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspective/1486</a>

### Why do we think the "per-parameter-ness" is worth it?

Well, it...

#### 1. just makes more sense

- a. Every parameter is an evenly sliced version of itself in FSDP2
- b. Whereas in FSDP1, some parameters are entirely on 1 machine while others could be split across arbitrarily. Plus, every parameter belonging to a FlatParam must share dtype and subclass and requires\_grad.
- 2. widens what could be wrapped by FSDP into a layer
- 3. unlocks param-wise optimizers, like AdaFactor
- composes with other distributed parallelisms (TP, PP) through DTensor, as tensor structure is maintained

#### FSDP2 also has other cool pros, like deterministic memory

Due to how FSDP1 implemented its rate limiter on CPU, it couldn't actually guarantee:

Only 2 layers worth of memory will coexist at a time.

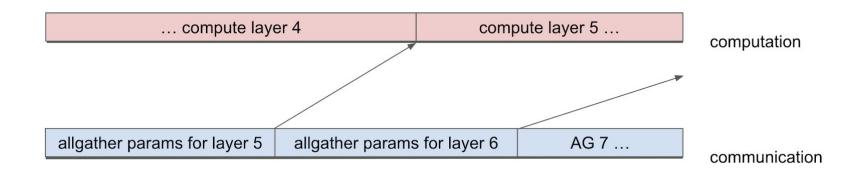
For example, using CPU offloading sometimes caused *more* memory usage!

FSDP2 moved the burden of rate limiting from CPU to CUDA events, so now this guarantee can actually be met :D

For more details, see

https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspective/1486

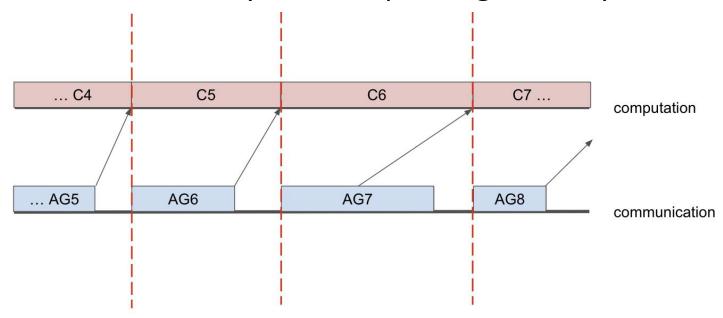
#### Our implementation overlaps communication with computation



This way, the all-gathers are imperceptible in terms of runtime!

Note that this requires **prefetching** the next layer's parameters so that they could be ready by the time its compute starts.

#### But we do it methodically to avoid peaking memory



The FSDP rate limiter forces prefetching to wait until the previous layer is freed.

Desired guarantee: only 2 layers worth of memory will coexist at a time.

#### So let's take FSDP2 out for a swim

Answer.AI had already <u>successfully composed FSDP1 with QLoRA</u>, but only after expertly maneuvering through its limitations.

e.g., "FSDP was not copying the quantization information needed for each shard to use the model! That's because FSDP is quite opinionated on the subset of data it will sync between GPUs"

We want to offer cleaner, more general solutions to composing distributed with low precision parameters, so why not start here, with FSDP2 x NF4?

So we did! <a href="https://github.com/pytorch/torchtune/pull/909">https://github.com/pytorch/torchtune/pull/909</a>

Cleaner and more composable is always good, but how do we do on perf? Let's find out!

#### The plan

- 1. Get some GPUs
- 2. Run a benchmark on Answer.Al's train.py
- 3. Run the same benchmark on Wei's torchtune recipe
- 4. Wait...were those actually the same benchmark?
- 5. Make sure what I'm measuring was 🍎 ⇔ 🍏 and not 🍎 ⇔ 🍊
- 6. Record the gaps
- 7. Investigate and fill the gaps if possible

#### Getting some GPUs

I rented myself a dual setup on vast.ai

- 2 RTX 3090s, 24 GB VRAM each
- 117 GB RAM
- 12 cores => required torch.set\_num\_threads(8)
- PCIE 3.0 16x, with 9.0 GB/s bandwidth each
- CUDA 12.2

### Running a benchmark on Answer.Al's train.py

llama2-7B, context length 2048

| batch size                                                   | peak memory | runtime for a step |
|--------------------------------------------------------------|-------------|--------------------|
| 8                                                            | 15.03 GiB   | 13.9s              |
| 10                                                           | 18.05 GiB   | 16.9s              |
| below needs PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True |             |                    |
| 12                                                           | 21.06 GiB   | 19.9s              |
| +                                                            | ООМ         | N/A                |

llama2-7B, context length 2048, with CPU offloading

| batch size                                                   | peak memory | runtime for a step |
|--------------------------------------------------------------|-------------|--------------------|
| 8                                                            | 12.88 GiB   | 14.0s              |
| 10                                                           | 15.89 GiB   | 17.5s              |
| below needs PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True |             |                    |
| 12                                                           | 18.91 GiB   | 20.9s              |
| 14                                                           | 21.92 GiB   | 23.6s              |
| +                                                            | ООМ         | N/A                |

Thanks Answer.AI peeps on CUDA MODE for sending me benchmarks to try!

#### Running a benchmark on Answer.Al's train.py

llama2-7B, context length 2048

| batch size                                                   | peak memory | runtime for a step |
|--------------------------------------------------------------|-------------|--------------------|
| 8                                                            | 15.03 GiB   | 13.9s              |
| 10                                                           | 18.05 GiB   | 16.9s              |
| below needs PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True |             |                    |
| 12                                                           | 21.06 GiB   | 19.9s              |
| +                                                            | ООМ         | N/A                |

llama2-7B, context length 2048, with CPU offloading

| batch size                                                   | peak memory | runtime for a step |
|--------------------------------------------------------------|-------------|--------------------|
| 8                                                            | 12.88 GiB   | 14.0s              |
| 10                                                           | 15.89 GiB   | 17.5s              |
| below needs PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True |             |                    |
| 12                                                           | 18.91 GiB   | 20.9s              |
| 14                                                           | 21.92 GiB   | 23.6s              |
| +                                                            | ООМ         | N/A                |

I decided to focus on just one of these to do an apples to apples comparison.

```
python train.py --model_name meta-llama/Llama-2-7b-hf --batch_size 8
--context_length 2048 --train_type qlora --use_gradient_checkpointing True
--reentrant_checkpointing True --dataset dummy --dataset_samples 48
```

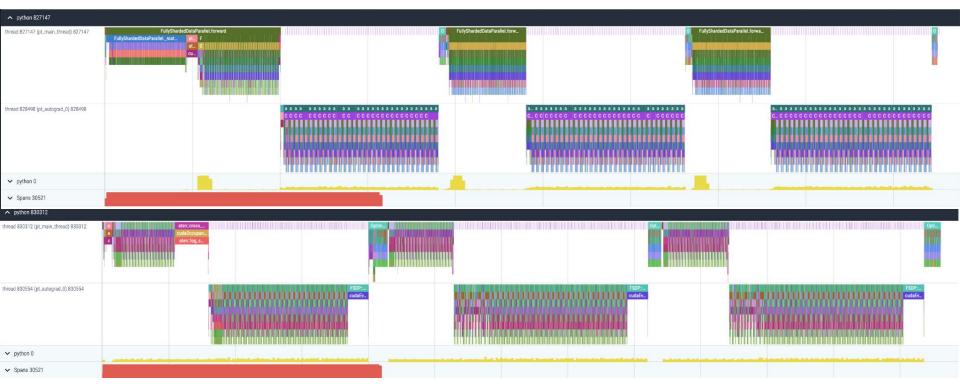
#### Running the same benchmark on Wei's torchtune recipe

tune run --nnodes 1 --nproc\_per\_node 2 lora\_finetune\_fsdp2 --config <a href="recipes/configs/dev/llama2/7B">recipes/configs/dev/llama2/7B</a> glora fsdp2.yaml \* with tweaks to align the configs

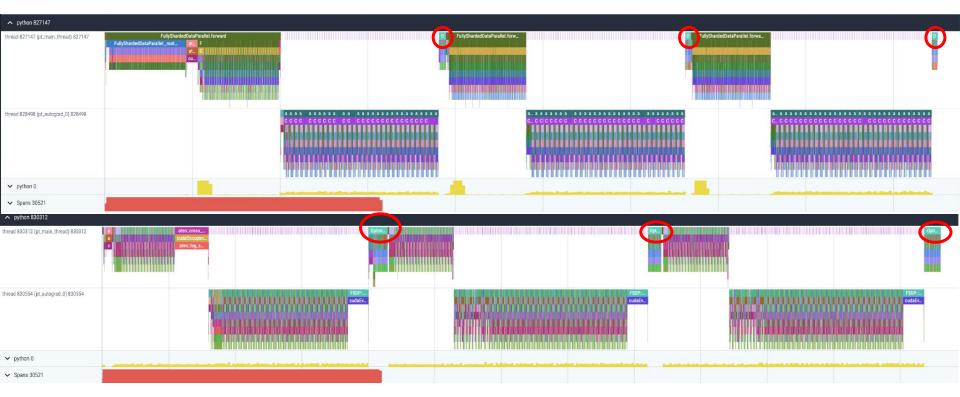
|           | batch size | peak memory | runtime for a step |
|-----------|------------|-------------|--------------------|
| train.py  | 8          | 12.88 GiB   | 14.0s              |
| torchtune | 8          | 12.60 GiB   | 16.5s              |

Since FSDP2 is stricter about memory and requires extra copies, it would be easy to chalk up the differences above as expected.

But, nah, we have to be diligent! And very quickly, one glance at the trace revealed troubling shenanigans.

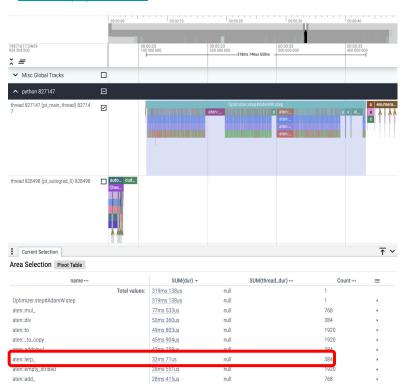


Spot the difference!

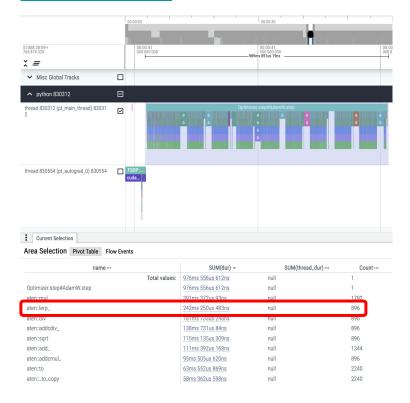


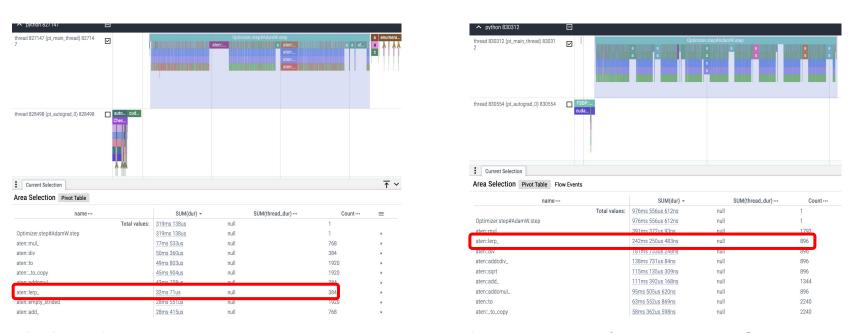
Why were the optimizer steps so much bigger in the torchtune trace?

#### train.py trace



#### torchtune trace





Aha! torchtune was training more parameters than Answer.Al's train.py config. 448 - 384 = 64 extra params! Any guesses where they came from?

```
# If lora_target_modules is 'all', set sensible defaults for llama + mistral type modules

# See peft.utils.constants -> TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING for the current defaults

if lora_target_modules == "all":

args["lora_target_modules"] = ["k_proj", "q_proj", "v_proj", "up_proj", "down_proj", "gate_proj"]

elif lora_target_modules.lower() == "default":

args["lora_target_modules"] = None

1122
```

```
# Model Arguments
model:
component: torchtune.models.llama2.qlora_llama2_7b
lora_attn_modules: ['q_proj', 'v_proj', 'k_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8
lora_alpha: 16
```

Spot the difference!

```
# If lora_target_modules is 'all', set sensible defaults for llama + mistral type modules

# See peft.utils.constants -> TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING for the current defaults

if lora_target_modules == "all":

args["lora_target_modules"] = ["k_proj", "q_proj", "v_proj", "up_proj", "down_proj", "gate_proj"]

elif lora_target_modules.lower() == "default":

args["lora_target_modules"] = None

1122
```

```
# Model Arguments
model:
component: torchtune.models.llama2.qlora_llama2_7b
lora_attn_modules: ['q_proj', 'v_proj', 'k_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8
lora_alpha: 16
```

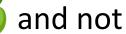
Spot the difference!

torchtune LoRA-fied the output\_proj when the train.py did not. LoRA-fying = adding 2 low rank adapters to the o of every qkv. 32 TransformerDecoderLayers \* 2 more params each = 64 extra params to train.

# Making sure what I'm measuring is $\stackrel{\longleftarrow}{=}$ $\Leftrightarrow$ $\stackrel{\longleftarrow}{=}$ and not $\stackrel{\longleftarrow}{=}$ $\Leftrightarrow$ $\stackrel{\longleftarrow}{=}$













I took a pause cuz it wasn't going to be fruitful if the items getting measured weren't sufficiently aligned!

#### Steps I took:

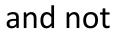
- Stopped LoRA-fying the output proj in my torchtune recipe
- Changed FSDP2 wrapping policy to wrap the same layers
- Replicated the same "dummy" dataset for my benchmark
- Took another pass ensuring max seq len + other hyperparams for model construction were the same

# Making sure what I'm measuring is 🍎 ⇔ 🍏 and not 🍎 ⇔ 🍊















I then ran the benchmark after my changes...and FSDP2 x NF4 still looked mighty slow.

|           | batch size | peak memory | runtime for a step |
|-----------|------------|-------------|--------------------|
| train.py  | 8          | 12.88 GiB   | 14.0s              |
| torchtune | 8          | 10.70 GiB   | 16.6s              |

Even though it may feel like we took a mini step back, we've made a giant leap unblocking our official first step: understanding the problem (gaps).

I could finally start a very long game of Spot the Difference.

train.py trace

torchtune trace

#### Recording the gaps

I first did a survey of the land, and derived this chart:

|           | FSDP1 & answerai | FSDPZ & ture |           |
|-----------|------------------|--------------|-----------|
| enum      | 92 ms            | 129 ms       |           |
| first AGs | 120 ms           | 103 ms       |           |
| forward   | 4 364 ms         | 5209 ms      | 2N 00 P + |
| bachward  | 8 975 ms         | 10136 mg     | + 1100m   |
| optimizer | 319 ms           | 894 ms       | + 500 ms  |
| total     | 13 870 ms        | 16471 ms     |           |
| e2e       | 13 964 ms        | 16586 MS     | +2622 ms  |

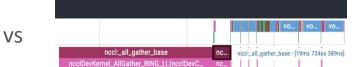
We see that we should focus on the forward and the optimizer step kernels.

#### Recording the gaps

the optimizer step is still slower

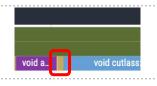






the 2nd AG was 5ms longer

additional overhead right before the gemms



VS







differing ops before sdpa

exposed AGs/mem H2Ds





### Investigating and filling the gaps if possible

lesgo

traces:

https://drive.google.com/drive/u/3/folders/1HmGNC4v4L5nXhtdDMVCpUBrme1ELp-2C

### Gap: the optimizer step is still slower



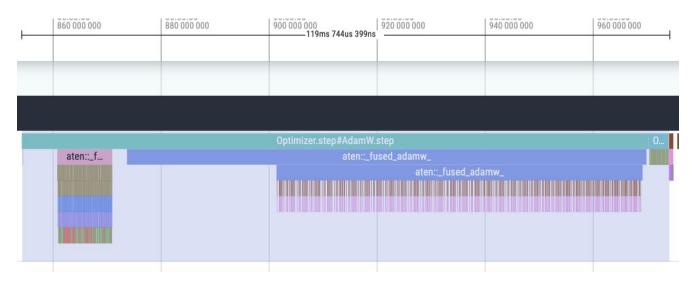


#### Understanding why:

- DTensor overhead
- parameter is not necessarily contiguous

Solution: used fused! (thanks Intel)

#### Gap filled: the optimizer step is now faster



#### Solution: used fused! (thanks Intel)

- avoid DTensor overhead by only dispatching 1 fused kernel!
- leverage vectorization
- goes from ~1s -> 120ms, speeding up 8x

### The gaps

the optimizer step is still slower



VS



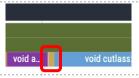


VS



the 2nd AG was 5ms longer

additional overhead right before the gemms



VS





VS



differing ops before sdpa

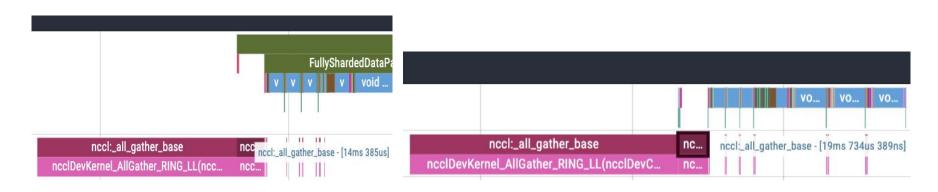
exposed AGs/mem H2Ds



nccl\_all\_gather\_base
ncclDevKernel\_AllGather\_RING\_LL(ncclDevComm\*, unsigned long, \_

FSDP::pre\_forward
M\_Memcpy \_\_Memc\_\_Memc\_\_Memc\_\_

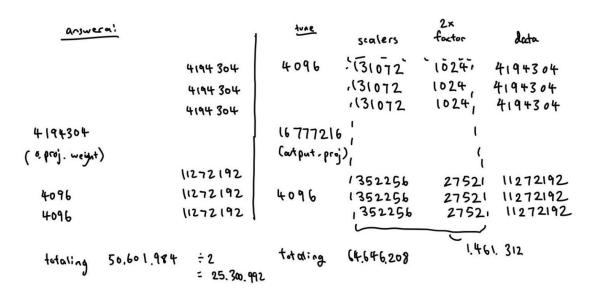
### Gap: the 2nd AG was 5ms longer



Check the all-gather input arguments!
Realize that 25,300,992 bf16s != 64,646,208 Bytes

In FSDP1, print out \_fqns of a FlatParameter. In FSDP2, print <u>all\_gather\_inputs</u>. Lining up the parameters revealed...

#### Gap understood: the 2nd AG was much larger



#### Why the heavy load?

- our NF4 all-gathers the NF4 metadata whereas bnb Params4bit does not
- more significantly, after opting out of LoRA, our output\_proj remained frozen but full sized. train.py froze their output proj too, but quantized it

### Gap to be filled: detangle the q from qLoRA

#### Why the heavy load?

- our NF4 all-gathers the NF4 metadata whereas bnb Params4bit does not
  - This is intended! FSDP2 allows NF4Tensor subclass to <u>decide</u> which of its inner tensors are all-gathered
- more significantly, after opting out of LoRA, our output\_proj remained frozen but full sized. train.py froze their output\_proj too, but quantized it.
  - This is not intended!
  - This is a next step for torchtune to allow base weights to be quantized even if they opt out of LoRA

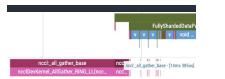
### The gaps

the optimizer step is still slower



VS



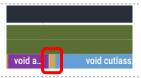


VS



-the 2nd AG was 5ms longer

additional overhead right before the gemms



VS





VS



differing ops before sdpa

exposed AGs/mem H2Ds



## Gap: additional overhead right before the gemms



#### Understanding why:

- NF4Tensor overrides the mm in order to dequantize before calling the gemm
- bnb has a CUDA kernel for the dequantization work

#### Gap to be filled: fuse LinearNF4 overhead



#### Solutions:

- A next step is to leverage torch.compile. I did try it, but it does not play well with activations checkpointing at the moment
- Another next step is to package and use the Triton kernels that Driss wrote

## The gaps

the optimizer step is still slower

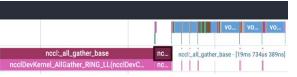


VS



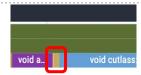


VS



- the 2nd AG was 5ms longer

additional overhead right before the gemms



VS





VS



differing ops before sdpa

exposed AGs/mem H2Ds





## Gap: differing ops before sdpa (costing us 6ms per layer!)

This gap is the most boring of them all: torchtune and the default LLaMa2 config simply use different RoPE algorithms.

- torchtune uses the original Meta algorithm with no numerical differences.
- the default LlamaRotaryEmbedding is 2-3x faster (for our trace 6ms faster) but is not the same numerically.

#### Solution:

 A next step is for torchtune to offer more options for more optimized but less faithful Embedding algos if desired.

### The gaps

the optimizer step is still slower



VS



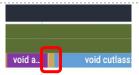


VS



-the 2nd AG was 5ms longer

additional overhead right before the gemms



VS





VS



differing ops before sdpa

exposed AGs/mem H2Ds



rocl\_all\_gather\_base
ncclDevKernel\_AllGather\_RING\_LL(ncclDevComm\*, unsigned long, \_\_

FSDP::pre\_forward
M\_Memcpy \_\_Memc\_Memc\_Memc\_

#### Gap: exposed AGs/mem H2Ds



We wonder: why is the left side Memcpy hidden in FSDP1, but very exposed in FSDP2? Answer: the stricter memory restraints!

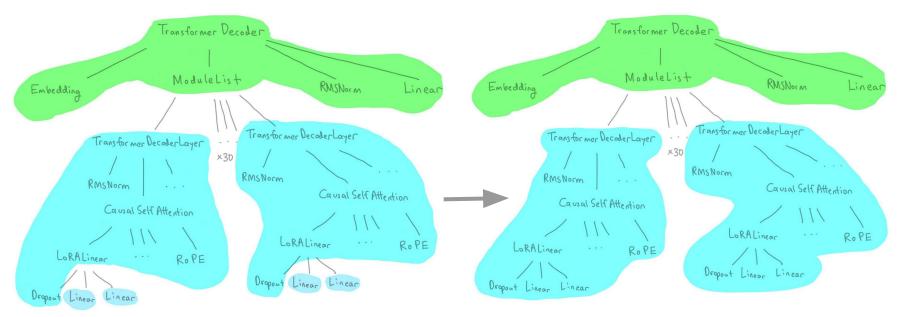
- Memcpy is used to bring offloaded params from CPU to GPU
- FSDP2 is guaranteeing the constraint that only 2 layers of params will be allowed at a time by having the Memcpy wait as well.

#### Gap: exposed AGs/mem H2Ds

Note that the problem here isn't that FSDP2 is too strict. It's that the computation is too

small to properly hide the communication! Solution: wrap more granularly. Have bigger layers. too tiny! nccl:\_all\_gather\_base ncclDevKernel\_AllGather\_RING\_LL(ncclDevComm\*, unsigned long, ... FSDP::pre\_forward M Memcpy ... Memc... Memc... Memc...

### We want a new wrapping policy:



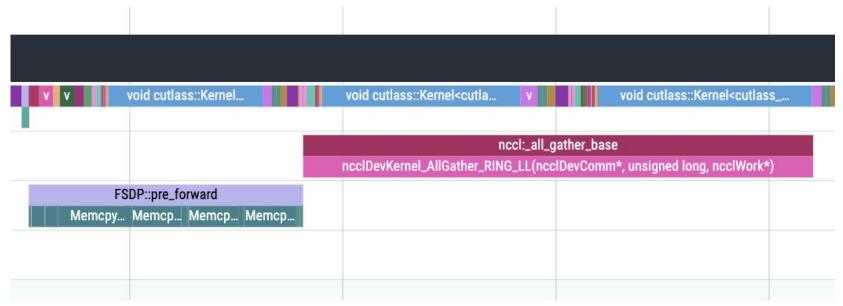
This new wrapping policy is only possible with FSDP2!
As now, both NF4Tensors and plain Tensors can coexist in 1 layer.

#### Side note: this is very easy to do in FSDP2

```
for m in reversed(list(model.modules())):
   # It is only a matter of commenting out the following two lines
    if isinstance(m, nn.Linear) and m.weight.requires_grad:
        fully shard(m, **fsdp kwarqs)
   # TransformerDecoderLayer is wrapped by CheckpointWrapper
    # when enable activation checkpointing
    if enable activation checkpointing:
        if isinstance(m, CheckpointWrapper):
            fully_shard(m, **fsdp_kwargs)
    else:
        if isinstance(m, modules.TransformerDecoderLayer):
            fully_shard(m, **fsdp_kwargs)
fully_shard(model, **fsdp_kwargs)
```

### Gap filled: hidden AGs/mem H2Ds

Solution: wrap more granularly. Have bigger layers.



## The gaps

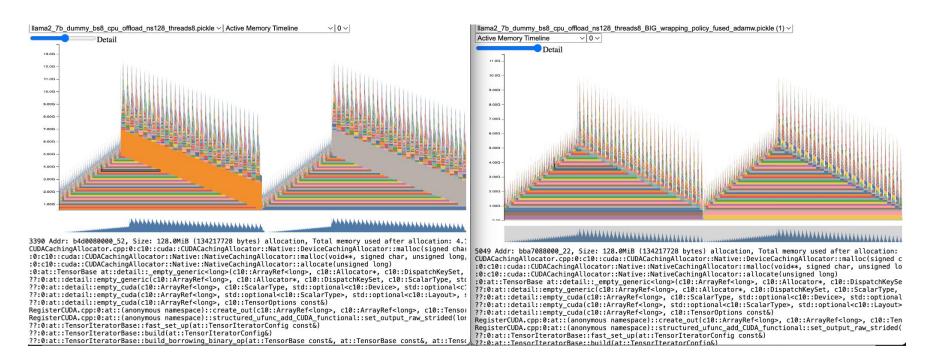
the ontimizer step is still slower VS - the 2nd AG was 5ms longer VS nccl:\_all\_gather\_base nccl:\_all\_gather\_base - [19ms 734us 389ns] nccl:\_all\_gather\_base ncci\_all\_gather\_base - [14ms 385us] ncclDevKernel AllGather RING LL(ncclDevC... additional overhead right before the gemms VS void cutlass: void cutlas: FullyShardedDataParallel.forward differing ops before sdpa void pytorch\_flash:

exposed AGs/mem H2Ds



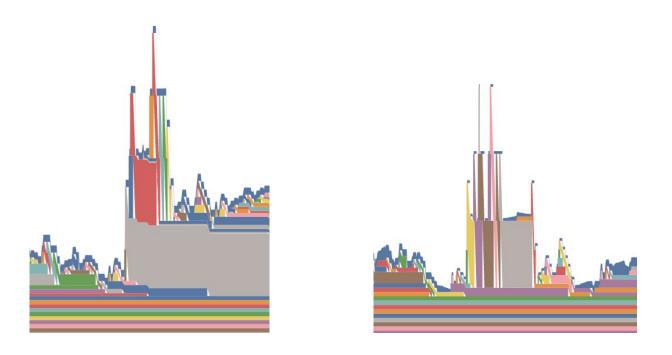
vo\_
nccl:\_all\_gather\_base
ncclDevKernel\_AllGather\_RING\_LL(ncclDevComm\*, unsigned long, \_\_
FSDP::pre\_forward
M\_Memcpy\_\_Memc\_\_Memc\_\_Memc\_\_

### Positive gap: how come torchtune uses less memory?



One, yes, FSDP2 has better guarantees. But here, it's that torchtune frees the loss early!

## Positive gap: how come torchtune uses less memory?



Zooming in, the gap is the size of the loss.

#### torchtune can get up to bs=16 for llama2-7b, 2048 context len

llama2-7B, context length 2048, with CPU offloading

| batch size                                                   | peak memory | runtime for a step |
|--------------------------------------------------------------|-------------|--------------------|
| 8                                                            | 12.88 GiB   | 14.0s              |
| 10                                                           | 15.89 GiB   | 17.5s              |
| below needs PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True |             |                    |
| 12                                                           | 18.91 GiB   | 20.9s              |
| 14                                                           | 21.92 GiB   | 23.6s              |
| +                                                            | ООМ         | N/A                |

| batch size                                                   | peak memory | runtime for a step |
|--------------------------------------------------------------|-------------|--------------------|
| 8                                                            | 10.7 GiB    | 14.8s              |
| 10                                                           | 13.2 GiB    | 18.2s              |
| 12                                                           | 15.7 GiB    | 21.7s              |
| 14                                                           | 18.3 GiB    | 25.3s              |
| below needs PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True |             |                    |
| 16                                                           | 20.8 GiB    | 28.8s              |
| +                                                            | ООМ         | N/A                |

train.py torchtune

### Try this out in torchtune!

https://github.com/pytorch/torchtune

though HUGE DISCLAIMER checkpointing is not working yet

#### The rest of the team

- @drisspg: Driss wrote the original NF4 tensor implementation
- @awgu: Andrew is the main architect of FSDP2
- @weifengpy: Wei showed how to compose new dtypes w/ FSDP2
- @rohan-varma/@ebsmothers: wrote the LoRA recipes and merged code in tune

#### Thanks!

Implement new dtypes that work with compile and FSDP: <a href="https://github.com/pytorch/ao">https://github.com/pytorch/ao</a>

Compile them: <a href="https://pytorch.org/docs/main/torch.compiler">https://pytorch.org/docs/main/torch.compiler</a>

Author them as subclasses so they work like real PyTorch tensors: <a href="https://github.com/albanD/subclass">https://github.com/albanD/subclass</a> zoo/

Go from 1 GPU to N GPUs with FSDP2: https://github.com/pytorch/pytorch/issues/114299

End to end finetuning examples: <a href="https://github.com/pytorch/torchtune">https://github.com/pytorch/torchtune</a>

End to end training examples: <a href="https://github.com/pytorch/torchtitan">https://github.com/pytorch/torchtitan</a>

And remember to profile your memory: <a href="https://pytorch.org/blog/understanding-gpu-memory-1/">https://pytorch.org/blog/understanding-gpu-memory-1/</a>

If you have any questions reach out to us on Discord.

If you're doing research at the intersection of quantization and distributed we'd loooove to hear from you